NAD+前體改善糖代謝

運動是我們談起減肥時,第一個會想到的策略。運動可以增加脂肪分解、氧化呼吸速率,以及線粒體生物合成。2016年,FrontPharmacol的文章通過動物模型證實,NMN對雌性肥胖小鼠糖耐量、肝脂質代謝、線粒體功能有顯著性改善,在某些指標甚至優於長期運動(6 周)的效果:

①雌性肥胖小鼠運動後肌肉NAD+水準有所回升,NADH水準回落,說明運動一定程度改善了細胞氧化呼吸能力;

②不運動但補充NMN的肥胖小鼠也表現出肌肉NAD+水準顯著增高,但同時 NADH也維持較高水準,說明NMN補充不僅改善氧化呼吸,還促進NAD+和NADH之間快速相互轉化;

③運動對肥胖雌性小鼠肝臟NAD+、NADH含量無顯著改善;

④不運動但補充NMN對肥胖小鼠肝臟能量代謝有顯著影響,NAD+和NADH水準大幅增加;且小鼠肝臟重量、肝甘油三酯也顯著下降。

肥胖不止影響患者本人,也影響其後代,在許多動物模型和人類中觀察到母體的不良飲食習慣對母親的雌性後代生殖有害。當母親在懷孕前期或懷孕期間患肥胖症,其女兒未來的卵泡儲備、卵母細胞質量都將受到不良影響。

一項研究採用小鼠作為模型,研究了運動或者補充 NMN 對親子肥胖的影響。研究人員發現,掌管卵子品質、生育能力的基因(Gdf9 和 Bmp15)對母親的飲食很敏感,小鼠肥胖會改變Gdf9和Bmp15的卵母細胞mRNA表達水準。鍛煉和NMN等干預措施顯著改善母體高脂飲食在雌性子代這方面的不利影響。

-NMN改善親子肥胖對後代生殖力的影響

NAD+前體改善糖代謝

與食物匱乏的我們的祖先相比,今天的飲食富餘的卡路裏壓倒了數世紀來人類建立的適應性代謝途徑,以II型糖尿病(T2D)為代表的現代生活方式流行病越來越低齡化、普遍化。在胰腺β細胞中,NAD+和SIRT1啟動效應,能回應葡萄糖濃度,並調節(由葡萄糖刺激引起的)胰島素分泌。

2011年,一篇文章探討了NAMPT和糖尿病的關係,高脂膳食和衰老均可損害小鼠的NAMPT介導的NAD+生物合成,促成T2D發病;NMN促進NAD+生物合成,能顯著改善小鼠葡萄糖、脂質穩態,具體為:通過逆轉高脂飲食引起的基因表達改變以回升肝臟胰島素敏感性,或刺激胰島素分泌,來改善疾病模型葡萄糖耐量低、胰島素抵抗等問題,因此作者認為NMN可作為針對飲食和年齡誘導的T2D的有效干預措施。

現今的糖代謝研究已不局限於肝臟、胰島、血液等外周器官組織,近兩年有一些研究開始發現中樞神經系統疾病與神經糖代謝密切相關,但結果有時與外周截然不同。神經元中SIRT1過表達將損傷雌鼠發情期和排卵,具有生殖抑制效果,與SIRT1在外周改善糖代謝的證據截然不同的是,神經元中SIRT1過渡活躍將降低糖耐量。

與神經元的SIRT1調節效應是相對獨立的是,星形膠質細胞的SIRT1活性參與星膠糖代謝和動物生殖力調節。星形膠質細胞SIRT1過表達的小鼠攝食量增加,體重增加,葡萄糖耐量降低,對飲食構成引起的肥胖也更敏感,但是相應地,這組小鼠行為更活躍,產能更旺盛,耗氧量也更高。當 SIRT1發生突變(去乙醯化酶功能缺失)時,小鼠食量減少,體重降低,葡萄糖耐量增大,對胰島素敏感性顯著提升,這種對比在雌性小鼠中尤為明顯。在生殖方面,SIRT1突變雌性小鼠發情週期受損,黃體減少,排卵減少。

NMN改善NO介導的內皮依賴性擴張並降低動脈氧化應激

內皮功能障礙是動脈粥樣硬化的主要先兆,它是臨床心血管疾病風險的預測因素,與許多常見的衰老疾病有關,包括認知障礙,阿爾茨海默氏病,運動功能障礙,胰島素抵抗和肌肉減少症人。我們先前已經證明,隨著年齡的增長,動脈SIRT1活性會降低,並導致與年齡相關的內皮功能受損。我們和其他人也表明,終生熱量限制可以預防,而短期熱量限制可以逆轉,這些是與年齡相關的內皮功能下降的原因。效果與動脈SIRT1活性增強有關。

在本研究中,我們證明了口服NMN補充劑可逆轉與年齡相關的內皮功能障礙。作為建立在我們以前的工作等人,我們的結果表明,衰老和補充NMN對內皮功能的影響是由氧化應激的差異介導的。研究表明補充NMN可以通過消除超氧化物介導的衰老對內皮功能的抑制來恢復老動物的內皮依賴性擴張。

總的來說,這些發現支持以下假設:氧化應激是與年齡相關的內皮功能障礙的關鍵因素,並表明氧化應激的抑制可能是NMN發揮其對老年動物內皮功能有益作用的主要機制。

科技部報導:口服NAD促進劑NMN有可能恢復卵子品質,進而恢復女性的生殖功能,這將遠比體外受精的侵入性小得多

  近日,發表在《Cell Reports》上的一項研究中,研究人員使用小劑量能逆轉卵子衰老過程的代謝化合物,成功提升了老年雌性小鼠的生育率,這為一些受孕困難的婦女帶來了希望。

  這項由澳大利亞昆士蘭大學Hayden Homer教授領導的研究發現,一種非侵入性療法可以維持或恢復卵子的品質與數量,從而減輕年齡較大婦女懷孕的最大障礙。隨著年齡的增長,卵子品質的下降是由於細胞中一種對能量產生至關重要的特殊分子的水準降低所導致的。

Homer教授說:“高質量的卵子對成功懷孕至關重要,因為它們提供了胚胎所需的幾乎所有的構成要素。為此,我們研究了一種‘前體’化合物(這種化合物被細胞用來製造分子)是否可以逆轉生殖衰老的過程。”該研究提到的分子和“前體”的名字分別為NAD(煙醯胺腺嘌呤二核苷酸)和NMN(煙醯胺單核苷酸)。

科技部報導:口服NAD促進劑NMN有可能恢復卵子品質,進而恢復女性的生殖功能

近日,發表在《Cell Reports》上的一項研究中,研究人員使用小劑量能逆轉卵子衰老過程的代謝化合物,成功提升了老年雌性小鼠的生育率,這為一些受孕困難的婦女帶來了希望。

  這項由澳大利亞昆士蘭大學Hayden Homer教授領導的研究發現,一種非侵入性療法可以維持或恢復卵子的品質與數量,從而減輕年齡較大婦女懷孕的最大障礙。隨著年齡的增長,卵子品質的下降是由於細胞中一種對能量產生至關重要的特殊分子的水準降低所導致的。

Homer教授說:“高質量的卵子對成功懷孕至關重要,因為它們提供了胚胎所需的幾乎所有的構成要素。為此,我們研究了一種‘前體’化合物(這種化合物被細胞用來製造分子)是否可以逆轉生殖衰老的過程。”該研究提到的分子和“前體”的名字分別為NAD(煙醯胺腺嘌呤二核苷酸)和NMN(煙醯胺單核苷酸)。

  Homer教授解釋說,小鼠在一歲左右時生育能力開始下降,這是由於卵子品質的缺陷造成的,這種缺陷與老年女性卵子的變化相似。Homer教授說:“我們在小鼠的飲用水中加入低劑量的NMN,在四周的時間裏對它們進行了治療,到了繁殖試驗期間,小鼠卵子品質得到顯著恢復,活胎數量也明顯增加。”

Homer教授表示,在發達國家,卵子品質差已成為人類生育能力所面臨的最大挑戰。他說:“這是一個日益嚴重的問題,因為越來越多的女性在年齡較大時開始懷孕,而且每四個接受試管受精的澳大利亞女性中就有一個年齡在40歲以上。試管授精不能改善卵子品質,所以對年齡大的女性來說,目前唯一可行的方案就是使用年輕女性捐獻的卵子。”

這項研究表明,口服NAD促進劑有可能恢復卵子品質,進而恢復女性的生殖功能,這將遠比體外受精的侵入性小得多。但是,需要著重強調的是,儘管這些藥物很有前景,但它們的潛在益處仍有待臨床試驗的檢驗。

這項研究是與澳大利亞新南威爾士大學合作完成的。

NMN-治療2型糖尿病的新靶點

金澤大學和東京國家衛生與醫學中心的研究人員在《自然通訊》中報道了一種調節肝臟攝取葡萄糖的新機制,該機制對2型糖尿病及其治療有重要意義。

由Inoue領導的石川金澤大學的研究小組的和東京國家全球衛生醫學中心的合作者證實 :Sirt2(一種去乙醯化酶)通過修飾GKRP調節肝臟葡萄糖激酶的關鍵分子,這一機制為2型糖尿病的治療提供了一個潛在的靶點。

研究人員在小鼠中進行了實驗,並且發現表達一種不能被乙醯化干擾HGU的GKRP,表明GKRP的乙醯化涉及到HGU和維持正常的葡萄糖水準。此外,研究人員發現,NMN (NAD+的前體)依賴的Sirt 2 活性降低和Sirt 2依賴的GKRP去乙醯化缺陷導致肥胖糖尿病小鼠中的HGU異常。

圖:NMN與糖尿病的實驗結果

這些結果表明:NMN依賴的GKRP去乙醯化在HGU正常化的調節中具有重要的作用。這種調節是靶向2型糖尿病和肥胖的重要治療靶點,也是HGU損傷的重要機制。NMN在治療2型糖尿病方面早已有大量研究。
總體而言:NMN可增強胰島素的敏感性,改善因飲食以及年齡誘導的葡萄糖耐受不良。

 NMN改善糖尿病理論來源 

NAD+的分子量過大,無法通過細胞膜進入細胞中,所以是不能直接口服的。但是經過科學家的堅持不懈的研究,終於證實通過服用NMN可以有效提高NAD+含量。NAD+又叫輔酶Ⅰ,全稱煙醯胺腺嘌呤二核苷酸。NAD+是三羧酸迴圈的重要輔酶,促進糖、脂肪、氨基酸的代謝,參與能量的合成;NAD+又是輔酶I消耗酶的唯一底物。NMN在我們人體內是長壽蛋白的輔因數NAD+的前體物質,NMN會在體內轉換成NAD+。

簡單來說,NMN可以修復全身受損的基因,當NMN被攝取到人體後,NMN在血液中的濃度就會逐漸上升,並在短時間內隨血液迴圈進入人體多個組織中,在人體組織中合成NAD+,提升NAD+水準,從而提升人體細胞和DNA的修復水準,改善糖尿病。

當然,NMN的功效不僅只能改善糖尿病,它還被世界頂尖學術期刊反復證實了NMN確實可以啟動細胞,延緩衰老,修復DNA損傷,平衡免疫機制等功效。

服用NMN後 視力獲得顯著改善

白內障、青光眼、黃斑病變

合稱為老人視力的三大殺手。

將近三成的患眼疾老人會出現抑鬱狀況。

經常會聽到身邊的老人說自己

看不清楚了,眼睛不好了

那麼,老年人出現視力模糊的

原因有哪些? 

一般來說造成老年人視力模糊

的主要原因有如下幾點:

老年人的年齡增大,視網膜結構出現生理性褪化

缺乏合成視色素所必需的維生素和重要的代謝物,如NAD

一些老年疾病,比如白內障、青光眼等等,讓視力下降

老年白內障

老年白內障是指中老年

開始發生的眼球晶狀體混濁

臨床表現為視力模糊

據統計,我國60歲以上的老人

有75%的白內障患者

隨著年齡增加,患病率明顯增高

在衰老進程中

蛋白降解系統會發生老化

細胞內有待清運的舊蛋白

不斷累積聚焦

 進而影響細胞的正常功能 

眼睛&衰老&NMN

年齡打破了蛋白穩態

隨著年齡增長

老舊蛋白沒有及時清除

逐漸在晶狀體裏形成渾濁的不溶物

因為光線不能透過

 所以患者視力明顯下降 

市場上對NMN

有各種良性回饋

有趣的是,很多中老年朋友

普遍反映服用NMN後

視力獲得顯著改善

為什麼NMN會提升

眼睛的功能呢?

我們體內無時無刻不在

合成新的蛋白質

而對於那些損耗

或已經喪失功能的蛋白質

則會光榮“退休”

新蛋白合成,老蛋白降解

這是一個回收迴圈再利用的過程

NAD是蛋白合成與降解過程中

最關鍵的輔酶之一

伴隨年齡的增長

細胞內NAD的含量下降

影響蛋白合成與降解

蛋白的天平失衡

晶狀體蛋白沉積造成視覺模糊

NMN助您明眸善睞

自從進入國內市場以來

康朗 NMN得到廣大消費者認可

高含量、精工藝等等

都是客戶對NMN的高度評價

通過補充NMN快速恢復

細胞內NAD的年輕狀態

 康朗 NMN助您擁有明亮的雙眸!

不同身體狀況的人是否適合吃NMN?

①補充NMN可能通過NAD+-SIRT1/3-PCG1α途徑來減輕脫髓鞘病變及其相關的炎症和氧化應激,進而緩解三叉神經疼痛症狀。

②有臨床試驗證實,NAD+前體補充有助於預防“再灌注後冠狀動脈再梗阻”。此外,NMN還可以預防心肌梗死後的收縮性心力衰竭,改善患者遠期生存情況。

①大多數三叉神經痛的病人是由三叉神經根受壓引起,而神經壓迫導致疼痛症狀的機制目前認為似乎與壓迫神經周圍的局部區域脫髓鞘有關,脫髓鞘病變可能引起異位衝動產生而導致疼痛發作。

②補充NMN可能通過NAD+-SIRT1/3-PCG1α途徑來減輕脫髓鞘病變及其相關的炎症和氧化應激,進而緩解三叉神經疼痛症狀。

有臨床試驗證實,NAD+前體補充有助於預防“再灌注後冠狀動脈再梗阻”。此外,NMN還可以預防心肌梗死後的收縮性心力衰竭,改善患者遠期生存情況。

既往研究發現HIV感染患者存在NAD+下降的表現,可能與CD38異常活化有關,HIV感染者的整體慢性炎症和早老表現可能也與NAD+缺乏相關。因此服用NMN補充NAD+可能對改善HIV感染者的整體狀況有好處。今年報導了一例使用NAD+前體(煙醯胺)+抗逆轉錄病毒療程徹底治癒HIV感染的病例,稱為聖保羅病人。暗示服用NAD+前體可能與有助於徹底清除HIV感染。

NMN-治療2型糖尿病的新靶點

金澤大學和東京國家衛生與醫學中心的研究人員在《自然通訊》中報道了一種調節肝臟攝取葡萄糖的新機制,該機制對2型糖尿病及其治療有重要意義。

由Inoue領導的石川金澤大學的研究小組的和東京國家全球衛生醫學中心的合作者證實 :Sirt2(一種去乙醯化酶)通過修飾GKRP調節肝臟葡萄糖激酶的關鍵分子,這一機制為2型糖尿病的治療提供了一個潛在的靶點。

研究人員在小鼠中進行了實驗,並且發現表達一種不能被乙醯化干擾HGU的GKRP,表明GKRP的乙醯化涉及到HGU和維持正常的葡萄糖水準。此外,研究人員發現,NMN (NAD+的前體)依賴的Sirt 2 活性降低和Sirt 2依賴的GKRP去乙醯化缺陷導致肥胖糖尿病小鼠中的HGU異常。

圖:NMN與糖尿病的實驗結果

這些結果表明:NMN依賴的GKRP去乙醯化在HGU正常化的調節中具有重要的作用。這種調節是靶向2型糖尿病和肥胖的重要治療靶點,也是HGU損傷的重要機制。NMN在治療2型糖尿病方面早已有大量研究。
總體而言:NMN可增強胰島素的敏感性,改善因飲食以及年齡誘導的葡萄糖耐受不良。

 NMN改善糖尿病理論來源 

NAD+的分子量過大,無法通過細胞膜進入細胞中,所以是不能直接口服的。但是經過科學家的堅持不懈的研究,終於證實通過服用NMN可以有效提高NAD+含量。NAD+又叫輔酶Ⅰ,全稱煙醯胺腺嘌呤二核苷酸。NAD+是三羧酸迴圈的重要輔酶,促進糖、脂肪、氨基酸的代謝,參與能量的合成;NAD+又是輔酶I消耗酶的唯一底物。NMN在我們人體內是長壽蛋白的輔因數NAD+的前體物質,NMN會在體內轉換成NAD+。

簡單來說,NMN可以修復全身受損的基因,當NMN被攝取到人體後,NMN在血液中的濃度就會逐漸上升,並在短時間內隨血液迴圈進入人體多個組織中,在人體組織中合成NAD+,提升NAD+水準,從而提升人體細胞和DNA的修復水準,改善糖尿病。

當然,NMN的功效不僅只能改善糖尿病,它還被世界頂尖學術期刊反復證實了NMN確實可以啟動細胞,延緩衰老,修復DNA損傷,平衡免疫機制等功效。

NMN產品不選貴的,只選對的!

糖尿病、癌症、心血管疾病、癡呆等很多疾病的發病率隨著人體衰老而增加。

NMN9600能夠對2型糖尿病進行有效的干預,緩解糖尿病症狀,增強胰島素的敏感性,抑制糖尿病併發症的發生。

NMN是人體固有的代謝產物可以直接轉換為關鍵性輔酶NAD+改善糖尿病 提高身體免疫力
是人體代謝活動不可或缺的物質!

改善幹眼病的細胞存活率NMN

NMN如何預防幹眼症?

NMN會增加生命分子煙醯胺腺嘌呤二核苷酸(NAD +)的水準,該分子參與細胞能量生成反應,SIRT1使用它來促進健康的新陳代謝和維持DNA完整性。研究人員認為,通過增加NAD +,NMN在視網膜脫離等情況下可保護眼細胞免受損傷。由於這些原因,找出NMN在幹眼病中的作用及其影響的途徑仍然至關重要。

NMN增強了幹眼條件下的眼細胞存活率

為了瞭解NMN是否能在鹽誘導的高滲實驗室培養皿環境中保護鼠眼細胞,Zhu及其同事用500 µM NMN處理了它們,並測量了它們的存活率。研究小組發現NMN治療可防止因高滲應激導致的細胞死亡。這些發現表明,在與幹眼病相似的情況下,高滲脅迫下NMN對眼細胞具有顯著的保護作用。

(Meng等人,2021 |炎症研究雜誌) NMN治療可保護小鼠眼細胞免受高滲性細胞死亡的影響。用鹹溶液處理眼細胞,以在類似於幹眼病的實驗室培養皿中誘導高滲性病症。暴露於鹽溶液24小時後,約有20%的細胞死亡,但NMN處理可逆轉此效應。在沒有高滲性條件的實驗室培養皿中,健康的眼細胞顯示約5%的細胞死亡(細胞凋亡)率,而在高滲脅迫下顯示的細胞則具有約20%的細胞死亡率。用NMN處理高滲脅迫下的細胞可使細胞死亡率正常化至大約5%,與健康細胞大致相同。

NMN啟動SIRT1保護眼細胞


然後,Zhu和同事試圖瞭解NMN如何減輕炎症。他們發現,在高滲應激條件下,NMN降低了炎症相關物質IL-17a的水準。該研究小組還發現,在高滲條件下,隨著NMN治療,SIRT1的水準會增加,而使用SIRT1抑制劑會進一步加劇炎症標誌物的水準。這些發現表明,NMN通過增加和啟動SIRT1減輕高滲條件下的炎症。

NMN促進免疫細胞癒合反應

為了進一步探索NMN如何保護眼細胞,Zhu及其同事研究了NMN和炎性標誌物IL-17a抑制劑對稱為巨噬細胞的免疫細胞狀態的影響。這些免疫細胞可以兩種狀態存在。當巨噬細胞處於M1狀態時,它們傾向於殺死附近的細胞,而當處於M2狀態時,它們可以治癒靠近它們的細胞。

研究人員發現,在相同條件下,高滲環境增加了破壞性的M1巨噬細胞,而NMN和IL-17a抑制劑促進了癒合的M2巨噬細胞。這些實驗表明,NMN通過抑制炎症反應的重要標誌物IL-17a抑制巨噬細胞殺傷並促進癒合。

“這些發現為我們提供了關於瞭解NMN對[幹眼病]發展的影響的重要線索,” Zhu及其同事在其出版物中表示。“我們提供了NMN在SIRT1和Il-17a表達上的應用知識,然後描述了潛在的分子機制。”

為什麼比同齡人顯老?

都是同齡人,為何她還是老樣子而你卻樣子老?

舊日好友相見,最紮心莫過於:她還是老樣子,而你卻樣子老,歲月似乎在自己身上留下了更深的痕跡。

衰老,簡而言之就是隨著年齡增長,人體會出現一系列生理機能衰弱和退行性病變,比如記憶力衰退、精力下降、睡眠品質變差、皮膚鬆弛、聽力視力下降、免疫失調、脫髮、骨質疏鬆等。這就好比一臺機器,使用時間一長各個零部件會老化、生銹,最後轉不動就停擺了。

究其根源,是隨著時間推移,我們身體裏的NAD+水準會逐漸下降。

NAD+又稱輔酶I,它是一種調節物質,存在於每一個細胞中,參與上千項反應,在控制DNA修復中發揮著重要作用,還是細胞核與負責能量合成線粒體間的關鍵聯絡因數。而NAD+的減少,會引起線粒體活性降低、DNA修復功能減弱等種種特徵,加速衰老過程。

明明是同齡人,你卻更顯老,很可能是體內的NAD+流失得更快更嚴重了。此時,想要不服老,此時我們需要從外源補充維持NAD+水準。但是,NAD+分子大,直接補充NAD+無法使其真正進入細胞中發揮作用,到底怎麼補?

比較好的方式,是通過攝入NAD+的前體——NMN,來補充合成NAD+。

NMN是“何方神聖”?有什麼用?

NMN,全稱為煙醯胺單核苷酸,它是人體本身就有的物質,同時存在於很多天然食物中。比如我們常吃的毛豆、捲心菜、西藍花、黃瓜等蔬果,就含有NMN,只是含量都較低。

常見食物NMN含量

2013年,哈佛大學醫學院大衛·辛克萊爾(David Sinclair)教授在世界權威科學雜誌《細胞》(Cell)發表了一篇論文,文中宣佈:補充NMN可改善哺乳動物的衰老症狀,並能有效地推遲衰老。

他在一系列的研究中發現,通過給實驗室小白鼠餵食NMN物質後,NMN很容易被吸收進入細胞中,而且兩個NMN能夠迅速在體內組合形成一個NAD+。過了一周後,相比對照組,NMN組小白鼠的體力和爆發力增長了60%,生理年齡延長了31%。

這篇論文,可以說奠定了NMN在抗衰老領域的地位。而發現NMN的延緩衰老作用的大衛·辛克萊爾教授,2014年還被《時代週刊》評為“TIME 100”(時代百大人物)。

隨後,華盛頓大學、日本慶應大學等多個權威科研機構相繼展開研究,反復證實NMN在抗老方面的作用。

多家權威期刊如《科學》《自然》《細胞》等,相繼刊登了大量關於NMN在人體和動物實驗的研究成果,表明NMN對人體具有一系列積極作用。

如對老年人來說,補充NMN有助於輔助改善2型糖尿病、預防老年癡呆症和帕金森等各種老年性疾病;對亞健康人群而言,有助於緩解睡眠差、視力下降、慢性疲勞等問題;對中老年女性,有助於改善皮膚健康,延緩皮膚衰老;對熬夜者,能夠加快機體恢復。

更重要的是,由於NMN是人體固有的物質,補充NMN增強人體自身線粒體功能自動合成NAD+,在實驗中沒有觀察到負面影響。

此前,商界大佬李嘉誠和潘石屹都曾公開表示吃過NMN,覺得精力充沛了不少。前者更是在2017年投資了NMN這一成分的產品。

血管是否健康是評判人是否長壽的標誌之一

醫學界認為,血管是否健康是評判人是否長壽的標誌之一。      隨著年齡的增長,血管老化是不可避免的 ,所以,老年人會經常出現血管老化的問題。當今社會,眾多娛樂化的表現導致了生活習慣常有一些不良情況的發生,不少年輕人的血管也已經不太健康。血管老化會導致一系列疾病,如心臟和神經系統疾病、肌肉損失、傷口癒合受損以及整體虛弱等。由此可見,血管的保養也被我們提上了日程。尤其是現在這個春季,晝夜溫差較大,心血管疾病也在這個時間爆發。

那麼怎樣才能養好血管呢?

 科學家們有發現,血管內壁由內皮細胞構成,內皮細胞對於血管的健康有著至關重要的作用。隨著內皮細胞的衰老,血管就會不停的萎縮,無法形成新的血管,同時,流向機體大部分部位的血液也會逐漸減少,組織從血液中獲得的營養物質減少,肌肉就會萎縮。

 是什麼導致了內皮細胞的衰老?

      原來,隨著內皮細胞開始失去一種稱為sirtuin1的關鍵蛋白質(又稱長壽蛋白),血液流動就會不斷減少。而sirtuin1的損失則是由於NAD+的損失引起的。

      NAD+(全名:煙醯胺腺嘌呤二核苷酸),又稱輔酶Ⅰ,是氧化還原過程中的一種必要輔酶,參與細胞物質代謝、能量合成、細胞DNA修復等多種生理活動;也是三羧酸迴圈的一種重要輔酶,促進糖、脂肪和氨基酸的代謝,參與人體能量合成;或者是DNA修復酶PARP、長壽蛋白蛋白質Sirtuins、環ADP核糖合成酶CD38/157的唯一底物。

服用NMN的小鼠血管明顯得到改善

實驗結果得出,在年輕的小鼠肌肉群中,sirtuin1信號被啟動,並產生了新的毛細血管。然而,當NAD+/sirtuin1活性隨著年齡的增長而降低,血液流動也會隨之減少。除了年輕小鼠內皮細胞中的sirtuin1,毛細血管的密度和數量也顯著下降。

 研究中發現,NAD+是無法被細胞直接吸收的,所以要補充NAD+需要通過其他方式。NAD+的前體物質NMN,利用NMN的轉化,從而增加體內NAD+的含量,成功地逆轉了衰老小鼠的血管萎縮!

 而且在培育實驗中得出,用NMN可以處理的來自人類和小鼠的內皮細胞的生長能力都增強了,且細胞死亡減少。接著,研究小組給一組20月齡(大約相當於70歲的老人)的小鼠服用了2個月的NMN。結果顯示,NMN處理使這些小鼠的毛細血管數量和密度被修復到了與年輕小鼠相當的水準。