人體內、細胞自身也具備NMN內源合成能力

01NMNMN合成原理N合成原理

1分子煙醯胺和1分子5-磷酸核糖基-1-焦磷酸(PRPP)在煙醯胺磷酸核糖轉移酶(NAMPT,或NAMPRT)催化作用下生成1分子NMN和1分子焦磷酸(PPI)。除煙醯胺可生成NMN,1分子煙醯胺核苷(NR)在煙醯胺核苷激酶(NRK)催化下磷酸化生成1分子NMN。

圖:NMN 的合成與轉化

PNP:嘌呤核苷磷酸化酶

NRK:煙醯胺核苷激酶

QPRT:喹啉酸磷酸核糖轉移酶

NAPRT:煙酸磷酸核糖轉移酶

NAMPT:煙醯胺磷酸核糖轉移酶

NMNAT:煙醯胺單核苷酸腺苷醯轉移酶

人體中的NMN在經NMNAT酶催化後,生成NAD+,利用後的 NAD+被降解為NMN前體NAM,經過NAMPT催化再度生成 NMN、NAD+……如此一來,NAM、NMN、NAD+可在體內進行一定程度的回收再利用,保障了細胞內NAD+基本供應。

02NMN合成酶、消耗酶的組織特異性

由上文可知,NMN由NR或NAM合成,在合成NAD+時被消耗,該過程主要涉及3種酶:NMN合成酶NAMPT、NRK與NMN消耗酶NMNAT,研究發現,它們具有一定組織特異性。

NAMPT與NRK 

NAMPT在體內廣泛存在,但組織間表達水準有較大差異。在腦和心臟,NAMPT活性高,因其介導的NAM→NMN→NAD+合成途徑是主要NAD+來源;在骨骼肌, NRK活性占主導,其介導的NR→NMN→NAD+合成途徑NAD+的主要來源,與此一致的是,慢性 NR 補充引起肌肉的NAD+水準增加,但在大腦或白色脂肪組織收效甚微。

NMNAT

NMNAT分為NMNAT1、NMNAT2、NMNAT3幾種亞型。小鼠組織代謝譜表明,除血液外,大多數組織中NMNAT活性不太受限制,要顯著高於NAMPT酶活性。因此,NAMPT酶可視作由NAM合NAD+過程中的限速酶(或“關鍵酶”),而NMNAT則不是。

03NMN的轉運和轉化

NMN的轉運和轉化

口服或注射進入體內的NMN,如何被攝取轉運,是備受爭議的論題。一些科學家認為,NMN可能需要在細胞外降解為更容易穿透細胞膜的產物,隨後進入胞內,例如通過細胞膜表面CD73轉化為NR,隨後經平衡核苷轉運蛋白ENTs轉運入胞。

與此相對的是,另一些科學家在哺乳動物體內發現了NMN的直接轉運體:在小鼠小腸內名為SLC12A8的氨基酸、多胺轉運體,對NMN有很高的選擇性,能夠識別並快速吸收、轉運腸道NMN。該轉運體的發現,反駁了NMN在動物體內只能通過降解為NR,隨後才能由消化腔進入細胞內的論點,不過SLC12A8的表達與分佈還需更多研究。目前推測,NMN轉運攝取可能具備組織特異性,有的組織經轉運體轉運,攝取極快;有的組織經降解後攝取,相對較慢。

圖:NMN 進入細胞的方式

一旦進入細胞內,NMN主要有兩個去向:①直接被線粒體攝取,用於用於 NAD+合成,參與三羧酸迴圈、氧化磷酸化等能量代謝步驟,或作為表觀調節劑SIRTs的底物被消耗;②在胞質生成NAD+,進入細胞核,此處的NAD+主要作為表觀調節劑SIRTs、DNA修復機制PARPs的底物被消耗。

NMN的這兩種功效你知道嗎?

NMN改善NO介導的內皮依賴性擴張並降低動脈氧化應激

內皮功能障礙是動脈粥樣硬化的主要先兆,它是臨床心血管疾病風險的預測因素,與許多常見的衰老疾病有關,包括認知障礙,阿爾茨海默氏病,運動功能障礙,胰島素抵抗和肌肉減少症人。我們先前已經證明,隨著年齡的增長,動脈SIRT1活性會降低,並導致與年齡相關的內皮功能受損。我們和其他人也表明,終生熱量限制可以預防,而短期熱量限制可以逆轉,這些是與年齡相關的內皮功能下降的原因。效果與動脈SIRT1活性增強有關。NMN9600

在本研究中,我們證明了口服NMN補充劑可逆轉與年齡相關的內皮功能障礙。作為建立在我們以前的工作等人,我們的結果表明,衰老和補充NMN對內皮功能的影響是由氧化應激的差異介導的。研究表明補充NMN可以通過消除超氧化物介導的衰老對內皮功能的抑制來恢復老動物的內皮依賴性擴張。

總的來說,這些發現支持以下假設:氧化應激是與年齡相關的內皮功能障礙的關鍵因素,並表明氧化應激的抑制可能是NMN發揮其對老年動物內皮功能有益作用的主要機制。

科技部報導:口服NAD促進劑NMN有可能恢復卵子品質,進而恢復女性的生殖功能,這將遠比體外受精的侵入性小得多

  近日,發表在《Cell Reports》上的一項研究中,研究人員使用小劑量能逆轉卵子衰老過程的代謝化合物,成功提升了老年雌性小鼠的生育率,這為一些受孕困難的婦女帶來了希望。

  這項由澳大利亞昆士蘭大學Hayden Homer教授領導的研究發現,一種非侵入性療法可以維持或恢復卵子的品質與數量,從而減輕年齡較大婦女懷孕的最大障礙。隨著年齡的增長,卵子品質的下降是由於細胞中一種對能量產生至關重要的特殊分子的水準降低所導致的。

Homer教授說:“高質量的卵子對成功懷孕至關重要,因為它們提供了胚胎所需的幾乎所有的構成要素。為此,我們研究了一種‘前體’化合物(這種化合物被細胞用來製造分子)是否可以逆轉生殖衰老的過程。”該研究提到的分子和“前體”的名字分別為NAD(煙醯胺腺嘌呤二核苷酸)和NMN(煙醯胺單核苷酸)。

  Homer教授解釋說,小鼠在一歲左右時生育能力開始下降,這是由於卵子品質的缺陷造成的,這種缺陷與老年女性卵子的變化相似。Homer教授說:“我們在小鼠的飲用水中加入低劑量的NMN,在四周的時間裏對它們進行了治療,到了繁殖試驗期間,小鼠卵子品質得到顯著恢復,活胎數量也明顯增加。”

服用NMN後 視力獲得顯著改善

眼睛&衰老&NMN

年齡打破了蛋白穩態

隨著年齡增長

老舊蛋白沒有及時清除

逐漸在晶狀體裏形成渾濁的不溶物

因為光線不能透過

 所以患者視力明顯下降 

市場上對NMN

有各種良性回饋

有趣的是,很多中老年朋友

普遍反映服用NMN後

視力獲得顯著改善

為什麼NMN會提升

眼睛的功能呢?

我們體內無時無刻不在

合成新的蛋白質

而對於那些損耗

或已經喪失功能的蛋白質

則會光榮“退休”

新蛋白合成,老蛋白降解

這是一個回收迴圈再利用的過程

NAD是蛋白合成與降解過程中

最關鍵的輔酶之一

伴隨年齡的增長

細胞內NAD的含量下降

影響蛋白合成與降解

蛋白的天平失衡

晶狀體蛋白沉積造成視覺模糊

NMN助您明眸善睞

自從進入國內市場以來

康朗 NMN得到廣大消費者認可

高含量、精工藝等等

都是客戶對NMN的高度評價

通過補充NMN快速恢復

細胞內NAD的年輕狀態

 康朗 NMN助您擁有明亮的雙眸!

NMN抗衰老,不是為了不變老,而是為了健康的變老

談及衰老,很多人腦海中首先會浮現出老人、皺紋、疾病等多種辭彙,較為負面,而提及抗衰老人們則會率先想到長生不老、青春永駐等代表人類永恆追求的辭彙,充滿著希望,令人開心,兩者形成很鮮明的對比,因此也可以理解人們長期以來對“抗衰老”的追求。

  但是同時,人們也必須知道,正是因為長期以來人們抗衰老的目標一直都是“長生不老”、“永葆青春”等可以說是較為遙遠的事情,“抗衰老”在很多人看來就是一種理想的事情,可信度並不高。直到如今,在中國仍有諸多人對NMN 抗衰老這一有著諸多科學權威認證的結論存在質疑。 在筆者看來,“長生不老”、“永葆青春”固然是值得人們去追求的,但是這應該被看作是一個終極目標,而不是每個時代“抗衰老”的目標。

人類抗衰老的目標應該是一步步前進的,而不是想要一蹴而就。NMN抗衰老,不是為了不變老,而是為了健康的變老。按照辛克萊的話來說“NMN增加的是20%的青春,而不是20%的壽命”。

 在目前的生命科學技術下,人類想要不變老是做不到的,我們只能夠延緩、減慢“衰老”在人體的流速。事實上,從2013年到2020年的諸多科學研究來看,科學家們採用NMN抗衰老的目標更多的是通過抗衰老來治療諸多由衰老導致的疾病,改善人類因為衰老而遭受的苦痛。

否則《Nature》等雜誌上不會存在那麼多NMN在預防和治療諸多疑難雜症方面有潛力的文章。 如今,在資本和社會人口老齡化形式的雙重發力下,NMN抗衰老逐漸在人群中普及開來,而放眼全國,分析人們選擇NMN時的理由,“延壽”無疑是占比最小的原因,因為人們是很清醒的,現階段的技術是無法達到這樣的目標的。同時對於很多人來說,相比低質量的活上120歲,高質量的活上100歲更受他們歡迎。 NMN抗衰老的目標不是為了不變老,而是為了健康的老去。